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Abstract

Numerical simulations of localized deformation in solids should capture the structural phenomenon of localization
and associated loss of material body strength in a manner independent of spatial discretization. Many regularization
techniques have been proposed to address the ill posedness associated with rate-independent softening plasticity that
leads to mesh-dependent numerical simulations. One approach to alleviating mesh dependence is the strong disconti-
nuity approach, which represents localized deformation as a slip surface within a plasticity model; a strong disconti-
nuity is a discontinuous displacement field. This approach is used in this paper to formulate a plane strain, pressure
sensitive, nonassociative plasticity model with strong discontinuity and to implement the model, along with an en-
hanced bilinear quadrilateral element, via an assumed enhanced strain method. Numerical examples demonstrate mesh
independence of the method for pressure sensitive materials. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Localized deformation; Geomaterials; Failure model; Strong discontinuity; Pressure sensitive nonassociative plasticity;
Assumed enhanced strain finite element method

1. Introduction

Geomaterials such as rock, heavily overconsolidated clays, or dense sands commonly exhibit localized
deformation. In practice, limit-equilibrium-type analyses (Janbu, 1954; Enger, 1971) are still conducted to
conservatively predict potential instability in earthen structures constructed from these types of geomate-
rials, such as top—down sequential excavations performed for almost any new building construction. Al-
though such analyses are useful for designing relatively simple earthen structures, more sophisticated
numerical methods like the finite element method are becoming necessary for analyzing complex designs.
Applications of interest requiring such sophisticated numerical methods include extraction of oil and
natural gas from deep underground reservoirs as well as deep underground construction associated with
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nuclear waste repositories and the strategic petroleum reserve, which stores a large reserve of crude oil for
national emergency purposes.

Localized deformation in geomaterials has been studied extensively to understand its inception and
evolution from a microscopic perspective in order to describe the observed phenomenological/macroscopic
behavior (e.g., acoustic imaging by Holcomb and Costin (1986) and DiGiovanni et al. (2000)). Microscale
experimentation and imaging is useful for understanding the underlying physics of the observed phe-
nomena (Fredrich, 1999) and essential when modeling material bodies on the order of nanometers to
millimeters in size. For larger scales of interest (i.e., centimeters to meters, and meters to kilometers, de-
pending on the material and application), physically-based internal state variable constitutive models (Rice,
1971; Lubliner, 1990; Bammann, 2001) which capture the macroscopic effect of the microscopic mecha-
nisms are used. From this perspective, this paper presents an internal state variable model that accounts for
the “fine scale’ agents which lead to macroscopic localized deformation in geomaterials (Garikipati and
Hughes, 2000b). In short, this paper presents a phenomenological approach to modeling localized defor-
mation in geomaterials via a strong discontinuity plasticity model implemented within an enhanced strain
finite element framework.

Associated with the appearance of localized deformation is the loss of material body strength. In the
past, rate-independent strain-softening plasticity models have been used to represent this ‘softening’ be-
havior in geomaterials (Prevost and Hoeg, 1975). A significant drawback associated with these models is
that they lead to mesh-dependent finite element solutions because such models do not contain an intrinsic
material length scale needed to define the width of a localized deformation zone and because the resulting
governing partial differential equation (PDE) is ill posed (Sandler and Wright, 1984). It has also been shown
that mesh alignment of standard finite elements affects the simulated localized deformation pattern.

In the absence of an intrinsic material ‘length scale’, adaptive remeshing, or another regularization
technique (e.g., viscous regularization), rate-independent softening plasticity models do not lead to finite
element solutions that satisfy two necessary criteria for the solution to be meaningful (i.e., mesh-inde-
pendent): objectivity with respect to mesh refinement and insensitivity to mesh alignment. Rate-dependent
plasticity models contain an intrinsic length scale that regularizes the mesh pathology associated with the
rate-independent limit, while generating a well-posed governing PDE (Sandler and Wright, 1984; Nee-
dleman, 1988; Loret and Prevost, 1990). Here, though it is of interest to consider the rate-independent case
directly since many geomechanical initial boundary value problems entail loading rates slow enough such
that the rate-independent limit is appropriate. It is noted here for completeness that rate-dependent plas-
ticity with strong discontinuity has been addressed for J2 flow and thus allows representation of localized
deformation via such models (Armero, 1999). Other models which contain an intrinsic length scale are the
higher-order gradient plasticity models (Aifantis, 1984; de Borst and Pamin, 1996; Ramaswamy and
Aravas, 1998a,b; Bammanni et al., 1999) and the micropolar continuum models (Cosserat and Cosserat,
1909; Mindlin, 1963; de Borst and Sluys, 1991). A variational multiscale method has been developed which
provides a general framework for implementing such multiscale material models, whereby the finite element
mesh does not need to be refined to the size of the material length scale in order to achieve a mesh-inde-
pendent solution (Hughes, 1995; Hughes et al., 1998; Garikipati and Hughes, 1998, 2000a).

A recently developed phenomenological model (Regueiro and Borja, 1999; Borja and Regueiro, 2001)
extends the strong discontinuity approach developed by Simo and co-workers (Simo et al., 1993; Simo and
Oliver, 1994; Armero and Garikipati, 1995, 1996; Oliver et al., 1999) to pressure sensitive, nonassociative
plasticity models. The strong discontinuity approach yields mesh-independent finite element solutions
without introducing a material length scale and without requiring special mesh alignment strategies. The
finite element solutions are objective with respect to mesh refinement because dissipation is calculated over
a set of zero measure (a surface) and, as a result, is independent of finite element diameter (Simo et al., 1993;
Regueiro and Borja, 1999). The finite element solutions are insensitive to mesh alignment because the slip
surface orientation is embedded within the finite element (along with the slip surface constitutive relation)
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via the assumed enhanced strain method (Simo and Rifai, 1990; Armero and Garikipati, 1995). In addition,
by generating mesh-independent finite element solutions of localized deformation, the strong discontinuity
approach improves convergence characteristics of its Newton—Raphson iterative solution algorithm (i.e.,
quadratic convergence). This paper presents some recent advances made to the pressure sensitive, nonas-
sociative model: (1) the plane-strain localization condition is determined in closed-form from detA4 =0,
where A is the nonsymmetric (no major symmetry) elastic-“perfectly”’-plastic acoustic tensor defined in Eq.
(14) (Borja and Regueiro, 2001), (2) separate post-bifurcation constitutive relations are proposed to govern
the stress—displacement response along the discontinuity surface (Borja and Regueiro, 2001), and (3) proper
algorithmic loading and unloading conditions are defined for post-localization behavior (this paper). The
following restrictions are placed on the formulation and implementation: small deformations and rotations,
drained condition (i.e., effect of pore-fluid influence is neglected), and quasi-static, isothermal loading.

A summary of symbolic notation used throughout this paper is noted here. Boldface denotes tensors, i.e.,
(@), = a;;. The symmetric dyadic product in index notation is (a ® b);, = 3(aib; + a;b;), where the super-
script “‘s”” denotes a symmetric second-order tensor which belongs to the space of real symmetric second-
order tensors S. The dot product is expressed as a - b = a;b;, where Einstein’s summation convention is
used. The inner product symbol ““:”” is used for contraction of two second-order tensors as a : b = a;;b;; or
for the contraction of a fourth-order tensor and a second-order tensor as ¢ : a = ¢;a. The divergence
operator acting on a second-order tensor is written as (V -a), = a;;;, where the comma denotes partial
differentiation with respect to x;. The symmetric gradient operator acting on a vector is written as
(V'a),; = 5(ai; + a;;). The Euclidean norm of a second-order tensor is written as ||| = /@;a;. The partial
differential operator 0,¢ denotes d¢/da, or 0,,¢ = 0¢/0a;;. The trace operator is tr(a) = a;;.

2. Governing equations with discontinuity

Consider a closed body Q C R™m (ng, = 1,2, or 3) with smooth (i.e., C') internal discontinuity surface
& c R™n~! as shown in Fig. 1. Let x € Q denote the location of material particles x in Q.

The local form of quasi-static, isothermal equilibrium is written as follows (Hughes, 1987): Given
b:Q— R'm 7., — R and g: I, — R"=, find u: Q x [0, T] — R"= (where [0,7] C R, is the time
interval of interest) such that

Fig. 1. Body Q with discontinuity (@ = Q. UQ_,0Q@ =T,UT,UY, Q= QUdQ).
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V-e+b=0 in Q,
cg-v=t’ onl,
_ (1)
u=g onl,,
[6] -n=[t,]=0 across &,
where ¢ is the Cauchy stress, b, the prescribed body force, v, the unit normal to I',, n, the unit normal to &,
17, the prescribed traction, g, the prescribed displacement, and [ e ]| denotes the jump of a quantity across &
(e, [6] =6t —67).
The variational form of quasi-static equilibrium, using the local form as a point of departure, may be
written as follows (Hughes, 1987): Given b : Q — R™m ¢ : [, — R~ and g : I', — R™™ find u € % such
that for all y € 77,

/{)Vsn:o-dQ—/Qn'bdQJr/nn-t”quLLtr([[o]}~n)df, (2)

where 5 = du is the weighting function and first variation of u. The space of admissible weighting functions
is defined as

Vi={n: Q> Ry H'lg=00nT,}, (3)
and the space of admissible trial solutions is defined as

U:={u:Q— R |ucHu=gonTr,}, (4)

where H' is the first Sobolev space.

3. Kinematics of strong discontinuities

For rate-independent, infinitesimal, perfect plasticity, discontinuous displacement fields are admissible
solutions to the boundary value problem and are contained within a solution space called the bounded
deformation (BD) space (Matthies et al., 1979). The infinitesimal strains are singular distributions and are
contained within the space of bounded measures because the integral of the Dirac-delta function is a finite
measure. The discontinuous displacement field is defined as

u(x, ) = u(x,1) + [u(t)|Hy (x) (5)
SN—~— N———
continuous discontinuous

where [u(¢)] = u™ — u~ = {(¢#)m is the jump in displacement across the discontinuity surface . and is as-
sumed independent of x, {(¢), the jump magnitude dependent on time ¢, m, the unit vector designating the
jump direction, and Hy(x), the Heaviside function defined as

1 ifxeq,,
H-”(x)_{o if xe Q. (6)

The jump displacement [u(z)] could vary spatially along the discontinuity & (i.e., [u(x,?)]), but for sim-
plicity here it is considered spatially invariant. The symmetric gradient of the displacement field in Eq. (5),
treating the Dirac-delta function as a distribution, is the small strain tensor (Simo et al., 1993)

€(x,t) :=Vu=Vau(x,t) + V[u(t)] Hy(x) + ([u(t)] @ n)*54(x) (7)
T singular ’

regular
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where n is the unit normal to the discontinuity surface % pointing into Q. (Fig. 1), and d« is the Dirac-delta
function on .%. Essentially, the gradient of the Heaviside function is VHy = nds. The Dirac-delta function
is treated in a distributional framework (Stakgold, 1998) throughout the formulation of a plasticity model
with strong discontinuity.

4. Nonassociative pressure sensitive plasticity with strong discontinuity

Aspects of nonassociative pressure sensitive plasticity with strong discontinuity are discussed along with
details for nonassociative Drucker—Prager plasticity formulated in the context of strong discontinuities.

4.1. Localized plastic deformation

A material body with discontinuous displacements (whose presence is detected by the localization
condition in Eq. (14)) has singular strains at discontinuity % and plastic flow localized to % (Simo et al.,
1993) that in turn results in a singular distribution plastic consistency parameter as

)= )58, (8)

Eq. (8) states that all further irrecoverable deformation occurs along the discontinuity . since plastic
deformation is localized there. Thus, the evolution of the internal state variables is also localized to the
discontinuity .. For some geomaterials this is a gross approximation because irrecoverable deformation is
not completely localized to a surface (e.g., granular materials that typically exhibit shear bands of finite
width (Vardoulakis et al., 1978)). Thus, a shear-band-to-slip-surface transition would be more appropriate
for certain geomaterials (Aydin and Johnson, 1983; Oliver et al., 1999). This transition will be considered in
a future paper.

The stress rate ¢ must be regular (Simo et al., 1993). From Regueiro and Borja (1999), 6 may be written
as

6=c:Vu+c: ([uﬂ®n)s—)»(;2—(£ Oy 9)

=0

= 6=c:Vu, (10)

where ¢ is the constant fourth-order tangent elastic modulus tensor and ¢(6,%) : S x R — R is the plastic
potential function. Thus, the stress is calculated solely from the regular part of the strain field in Eq. (10).
Note that the tensor coefficient of the singular part of the right-hand side of Eq. (9) must be zero in order
for the stress rate 6 to be regular. The tensor contraction of ¢® (assuming isotropy) with the difference within
the brackets in Eq. (9) implies that the two terms within the brackets are equal (i.e., ([i] ® n)* = 150,¢).
This would not be possible because there would be an inconsistency in rank. The tensor ([i] ® n)* is rank
two because of its symmetry, while 450, ¢ is rank three for general three-dimensional stress conditions. This
result would inhibit the formation of discontinuous displacement fields unless a separate post-bifurcation
plastic potential function g(e,c) is assumed (Borja and Regueiro, 2001). Further discussion will follow in
this paper.

4.2. Localization condition

In order to be able to detect the presence of discontinuous displacements, a localization condition
is derived. When this condition is met, the solution bifurcates, allowing discontinuous displacements to
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appear within the material body. Eq. (2) showed that for equilibrium to be satisfied, the traction must be
continuous across the discontinuity surface .%:

[¢]-n=[t,]=0. (11)

This condition — along with the requirement that the stress rate be regular — requires that the traction
rate be regular. The traction rate is

t,=n-6=n-¢:Vu+n C?:([i] @n)° Sy, (12)

=0

where via the singular part of the consistency condition (Regueiro and Borja, 1999), C*® is expressed as

0,0 ®0:¢ : ¢
s : ¢t 10,0

and is called the elastic “perfectly”-plastic tangent modulus tensor, where ¢(a,2) : S x R — R is the yield
function. It is perfectly plastic because no hardening/softening parameter explicitly appears in the de-
nominator of Eq. (13) as compared to a weak discontinuity formulation (Rudnicki and Rice, 1975). Note
that C*® does not have major symmetry, which results from the nonassociative nature of the flow rule (i.e.,
0, # 05¢). It has been shown that the governing partial differential equation resulting from nonassociative
plasticity is ill posed (Schaeffer, 1990) which allows localization to be detected for a positive hardening/
softening parameter, H > 0, in addition to H <0 for associative plasticity. For the traction rate to be
regular, the term before the Dirac-delta function in Eq. (12) must be zero, which leads to the localization
condition in the following standard form:

A m=0 = detd=0 for m#0, (14)

CP = ¢ - (13)

where A = n- C® - n is the second-order elastic perfectly-plastic acoustic tensor. The localization condition
det A = 0 may be solved numerically via a nonlinear optimization routine such as that described in Ortiz
et al. (1987), or analytically for plane stress and plane strain as shown by Runesson et al. (1991). The
analytical expression for plane strain will be delineated during the presentation of a nonassociative
Drucker—Prager model.

4.3. Nonassociative Drucker—Prager plasticity

A simple nonassociative pressure sensitive plasticity model, the Drucker—Prager model, is now formu-
lated in the context of strong discontinuities. It is appropriate for modeling the constitutive behavior of
geomaterials but is limited in that it does not capture the difference in strength between triaxial compression
and extension commonly observed for soils, nor does it satisfactorily describe a geomaterial’s strength in
the tension regime. Regardless of these limitations, because of its simplicity, nonassociative Drucker—Prager
plasticity in the infinitesimal strain regime is useful for testing a new method like the strong discontinuity
approach.

A quadratic stored energy density function (e, ¢), which results in linear elasticity and linear hard-
ening for an isothermal solid, is defined as

P, &) =1 ¢ e +IHE, (15)

where ¢ is the elastic modulus tensor, and H is the shear hardening/softening modulus. The fourth-order
tensor ¢ is the isotropic elastic tangent modulus tensor defined as

¢ =71®1+2ul, (16)



R.A. Regueiro, R.I. Borja | International Journal of Solids and Structures 38 (2001) 3647-3672 3653

where 2 and i are the Lamé parameters, (l)ij = ¢, is the Kronecker-delta, and (I)ijkl = (0udj1 + 0u0j)/2 is
the fourth-order identity tensor.
Let the strain-like plastic internal variable ¢ : Q x [0, 7] — R be the deviatoric plastic strain measure eP:

T
Ei=eP = / ePdt, (17)
0
where
P = tr(eP), &P = \/;|ep|, &P =€e” — (0P/3)1. (18)
The stress-like plastic internal variable o is defined as
o= —H¢. (19)
A Drucker—Prager yield function takes the form (Drucker and Prager, 1952)
3
b(o,9) = @sn + V3 + fp) = 0, (20)
where
s=a—pl, K= =0+ p = 1tr(o) (21)

with derivatives

o \f 1 o

a4+ —n1 R | 22

60’ 2” + \/gﬁ ) 60( ) ( )
and 72 = s/||s||. Continuum mechanics convention is used in this paper for which compression implies p < 0.

The material constants o and f§ are the cohesion-like strength parameter and friction-like parameter, re-
spectively. A plastic potential function ¢(e, o) is defined in a form similar to the yield function ¢ (e, ) as

3
p(a,0) = \élSII +V3(x + bp) (23)
with derivatives
op \/3 1 dp
Gl 't \/§b ’ oo (24)

where b is the material dilation constant. Note that associative plasticity results if § = b, but typically for
geomaterials f > b with b > 0 for a dilatant material and b < 0 for a contractant material. The J2 flow
(von Mises) plasticity model is recovered when f = b = 0 which is appropriate for modeling the undrained
condition in cohesive soil. The evolution equation for ¢ is now

é::zai’:z &P =

) 25
a7 ’ (25)
where the evolution of plastic flow is € = 10¢/0e. Note that b takes the form
P
b= , 26
V3er 29)

which is analogous to the dilatancy factor used by Rudnicki and Rice (1975).
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4.4. Localization condition for Drucker—Prager plasticity

For nonassociative Drucker—Prager plasticity with strong discontinuity the elastic-perfectly-plastic
tangent modulus tensor results from Eq. (13) as

C <E_23'“_3ﬂbK>1®1+2 1_6LA®,} 3\/_MK( pre1+ bl ®n), (27)
X X

where y = 3(fi + pbK), K = 2 + (2/3)fi. The corresponding elastic-plastic acoustic tensor is

2 —
T 3pbK 61 325K
K ﬂx >n® +ﬂ1—iN®N—Q(ﬁN®n+bn®N), (28)

L L

where N = it- n = n - . Note that neither C*® nor A has major symmetry unless § = b.

The localization condition and slip line orientation are formulated in closed form for plane strain. In the
principal stress space, o, is the minor principal stress (major compressive principal stress), ¢; is the major
principal stress, and a3 is the intermediate principal stress, such that 0 > o, > 03 > 0, and |g,| < |o3]| < |02
Refer to Fig. 2 to construct the unit vectors n, ¢, and m as

cos 0 sin 0 cosy
n=< sinf 3, t=< —cosl », m= < —sinny , = cosyt+ sinyn, (29)
0 0 0

where 7 = 90° — 0 — , and  is the jump dilation angle between m and t.

Using an eigenvalue analysis similar to that presented in Runesson et al. (1991) — where their acoustic
tensor 4 was determined by a weak discontinuity formulation as opposed to the strong discontinuity
formulation presented in this paper — Borja and Regueiro (2001) presented a localization condition as

3\/283 _ 2
HSH - Ml—v(ﬂ_b>_(ﬂ+b)7 (30)

and an equation for the slip line orientation as

3(s2 4 vs3) + (1 +v)(B+b) 1L
3(s1+ vs3) + (1+v) (B + b) L

0= +tan”! -

(31)

SElE

—09 —02
S t
\ n v,
n
7’0 —01 / 9 —0aq
m n
(U

t S

Fig. 2. Slip line orientation with respect to major principal stress axis for 6.
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where the denominator in Eq. (31) is less than zero, the numerator is greater than zero, s, = o, — p, etc. Eq.
(31) determines the orientation of the normal n to the slip surface . with respect to the major principal
stress axis (Fig. 2). After substituting for n into A4, the direction m then follows from A -m =0, det 4 =0,
and Eq. (29) as

1 (An ) ] (A21 )
=tan' (= | =tan”' [ == |, 32
1 <A12 Ay (32)

where for the plane strain case

Ay Ap O
A= A21 A22 0 s (33)
0 0 =

and the acoustic tensor components 4,45, Ay, A4 are calculated from Eq. (28).
A nonlinear optimization algorithm (e.g., Ortiz et al., 1987) will detect onset of localization at the same
stress state as determined by Eq. (30) and with the same slip line orientation as found in Eq. (31).

4.5. Stress—displacement relation for Drucker—Prager plasticity

The stress—displacement relation is the constitutive equation for post-localization plasticity, and in a
formulation of plasticity with strong discontinuity, it results from the post-localization consistency con-
dition. Different yield and plastic potential functions can be chosen for the post-localization state (Borja
and Regueiro, 2001) because the plasticity solution has bifurcated and because the material body exhibits a
different physical (constitutive) response upon undergoing localized deformation. Here, a damage yield
function similar to a simple Mohr-Coulomb contact surface failure model (Vermeer and de Borst, 1984;
Wan et al., 1990; Borja and Regueiro, 2001) is chosen as

f=|n®t):6|—(c—tanp(n®n: o)) =0, (34)

where £ is a unit vector tangent to the discontinuity &, ¢, a cohesion-like internal state variable on ¢, and
¢, the mobilized friction angle on . A damage plastic potential function is defined similar to Eq. (34) as

g:=|n®t) 6| —(c—tany(n@n: a)), (35)

where i is the jump dilation angle in Fig. 2. The stress gradient of the damage yield function is

0 : s s -
% =sign[(n®t) :6](n®1t) + tan ¢p(n Q@ n), (36)
and the stress gradient of the damage plastic potential function is
ag . S S
% sign[(n®1) :6](n®1t)° + tanyy(n ® n)
1 . s . s
= o5y [n® (sign[(n®¢) : 6] cosyt + sinyn)) (37)
1 s
~ cosy (n@m),

where m is the direction of the jump displacement (Fig. 2) and sign[(n ® t)° : 6] determines the direction of z.
The stress rate must remain regular in the post-localization (damaged) state, at which time Egs. (9) and (37)
lead to
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”

: Ggi As

ey = hs gt = o mo ), (38)
which in turn leads to
45 = cosyl. (39)

From Eq. (25), it is clear that A (= 450+ ) represents deviatoric plastic deformation, and subsequently 4;
does as well. Eq. (39) states that J; is the tangential component of the jump displacement rate [#] (= {m) on
&. Note that Eq. (38) is valid because 0g/0s is a rank two tensor.

The consistency condition governing the damaged state becomes
_of . of.

c64+—¢c=0 40
o'—l—cc , ()

f@a 0

where 6 = ¢¢ : V'#, and ¢ = H;s s (Regueiro and Borja, 1999). Substituting and integrating Eq. (40) leads to
the stress—displacement relation as

(@) : o) = (S ) o1 + HycospL(1), (a1)
where
pi=sign[(n®1t)° : 6]t + tan ¢dn; (42)

time ¢ starts at the onset of localization, where {(0) = 0 and 6(0) = a,., and H; is the constant localized
softening modulus. Note that because H; is the softening modulus in the post-localization (bifurcated) state,
it is unrelated to H. Since it is of interest to model loss of material body strength, H; < 0. Writing Eq. (41)
in different form results in

0:= |ql(t)| + tan g(qn(t) —|—p(t)) - [|qt,IOC| + tan a(qn,loc + Proc) + Hj; cos '//C(t)] =0, (43)

where ¢, and ¢, are the tangential and normal components, respectively, of the deviatoric traction s - n on
discontinuity %, and p is the pressure:

g =nmat) s,
qn = (n@n) s,
p=tr(a)/3. (44)

5. Finite element implementation

The assumed enhanced strain (AES) method (Simo and Rifai, 1990) is the variational framework used in
this paper to implement the strong discontinuity approach, and it satisfies the two conditions necessary and
sufficient for convergence when an enhanced strain field is introduced: (1) stability, and (2) consistency (i.e.,
the patch test). In this implementation, the unregularized formulation is used, where the Dirac-delta
function is treated directly and not regularized (Armero and Garikipati, 1995; Regueiro and Borja, 1999;
Borja and Regueiro, 2001). The discretized variational equations are discussed first, followed by the matrix
finite element equations and linearization for solution by the Newton—Raphson method as well as a dis-
cussion of the numerical implementation of the localization condition.
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5.1. Petrov-Galerkin form

h

_ Let Q" be the cﬂlscreiihzation of a closed region Q, and Q, . be the discretization of the localized region
Qioe, where 9" € @, ., Q

loc> Pioc C @', and h is the discretization parameter. The resulting Petrov—Galerkin form
is as follows (Simo and Oliver, 1994; Armero and Garikipati, 1995):

/ V' 6"dQ = / 0 b'dQ + / W' - t7'dr, (45a)
fold o

h
Fr

/ 7 :6"dQ =0, (45b)
Qh

loc

where 7" = 67" and " = d&". The symmetric gradient of the continuous part of the displacement variation,
V3", belongs to the space

"=V Q" — S|V € L), (46)
while the enhanced strain variation 3" belongs to the space
&= {7 o Sl e Lo}, 47)

where L, is the zeroth Sobolev space and &" N &" = § ensures stability of the AES method (Simo and Rifai,
1990). With the reparameterized displacement field (Simo et al., 1993)

o (x,0) =@ (x,0) + [ () ]MG,(x), Mo (x) = Hy(x) — f"(x), (48)
where f" is the finite element enhancement function, the discretized displacement variation is

W' =ou =q'+[y'IMy, '] =n"m. (49)
Thus, the strain € and strain variation y" become

€ =Vu' =V +é, (50)
where

& =-'(mave) +men)’sy, (51)
and

Y=V =V 7 (52)

The enhanced strain variation 3" is chosen such that Eq. (45b) is satisfied for piecewise constant stress fields
(i.e., the patch test is passed, Taylor et al., 1986) such that

/ 7'dQ = 0. (53)
Qh

loc

Considering Eq. (53), 7" is chosen to have the following form (Armero and Garikipati, 1995)

- Ly

=y <5g)h - Agh )Fh, (54)
where 7, is the slip line length within Q! , 4" is the area, and F" € S. Thus, via Eq. (54), satisfaction of the
patch test is ensured. Because of the enhanced strain variational nature of the AES method, ¥ may be
chosen arbitrarily. The choice for F" made in Armero and Garikipati (1995) was F" = (m ® n)* which via
Eq. (45b) leads to a weak satisfaction of traction equilibrium across the discontinuity #*. The choice for F”",
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however, should in general depend on the constitutive relations governing the post-localization state since
the enhanced strain represents the localized deformation. Thus, the appropriate choice for F” given in
Eq. (41) is (Borja and Regueiro, 2001)

. Of

F = A sign[(n® 1)’ : 6"|(n®t)° + tan p(n @ n), (55)
which when substituted into Eqgs. (54) and (45b) and using Eq. (43) results in a weak form of Eq. (41) as
|Qyt| + tana(qy,n +p¢) - [|q§f,l,loc| + tana(qy,n,loc +py,loc) + H& COoS WCh] = Oa (56)
where
1 1 s
q.74| = lgidl" = — (n®t):s"dQ|,
l(/;h gh A 'Qfoc
Sn — T ndr o th,
doni=p | 4 YT /Q{’o‘(n ®n):s
S rar — / "dQ (57)
Pz = Lo {(/hp A" o 4 ’

Note that the absolute value operator | e | in Eq. (57) was moved outside the integral [, (n®1¢)’:s"dQ
loc

because since [u(¢)] in Eq. (5) is spatially invariant, the stress—displacement relation in Eq. (41) governs the
average stress—displacement response in the localized region Qf’oc (eventually within a localized element
region Qf'oc’e).

If a uniform strain element is used like the constant strain triangle or the hexahedral element of Bely-
tschko and Bindeman (1993), the AES method can be abandoned for the standard Bubnov-Galerkin
method via an implicit treatment of the consistency condition within the stress update (Borja, 2000). This
implicit treatment is possible because the jump displacement is assumed spatially invariant in Eq. (5), which
leads to a uniform enhanced strain within the localized element.

5.2. Finite element matrix equations
—h —h . . L .= —h =h
Let Q" = U}, Q, be the finite element discretization of a closed region Q, and Q. = U.**Q . be the
finite element discretization of the localized region €y,., where 7 is the number of elements and 7o is the
number of localized el}ements which is not known a priori. The standard finite element interpolations within
. -=n . . . .
an element domain Q, in isoparametric coordinates & are

inds Inds

w(E) =Y N(&d!, =) N(&¢, (58)

where 7,4, is the number of nodes of an element e, N4(&) is the shape function at node 4, and dj and ¢ are
the displacement vector and displacement variation vector, respectively, at node 4. The expressions in
Eq. (58) in matrix form are

@) =N.(&) d., 7' =N, e, (59)

where N, (&) is the element shape function matrix, and d, and ¢, are the displacement vector and dis-
placement variation vector, respectively, for element e. Taking the symmetric gradient of the expressions in
Eq. (59) results in

Vsﬁlg(f) = Be(é) : dé’v Vsﬁﬁ = Be(é) + Cey (60)
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where B.(&) is the element strain-displacement matrix. Likewise, from Egs. (51), (52), (54), and (55),
€" and 7" in matrix form for a localized element domain Q, _, are

& =-GU +F.Log,, G. = [m. o Vf!)], (61)
and

~h l_{ e S

o LA S PRI (62)
where

M, = sign /
Q

loc,e

(m.®t) : 0'th> t, + tan ¢n,, (63)

where [o] denotes matrix form of a tensor. Substituting the matrix expressions for 7" from Egs. (59), V*"
from Eq. (60), and 3" from Eq. (62) into Egs. (45a) and (45b), and assuming arbitrary values of ¢, and ",
the nonlinear finite element equations expressed in residual form result as

R, ::/ BZG”dQ—/ Neb'dQ — [ N;m'dr =0,
o fof i, (64)

Ve 1= |q5/e.,t| + tana(qffg,n +P%) - [|q,,(/e,t4,loc| + tana(q}/e‘n,loc +p5/g.loc) + H& Ccos ‘Pée] = 07

where R, is the standard residual for balance of linear momentum associated with the nodal degrees of
freedom for an element e, r, is the residual expressing the weak form of Eq. (41) on the discontinuity &,
associated with the jump displacement degree of freedom within element e, and ¢” is in vector form.
With the reparameterization of the displacement field in Eq. (48), the stress rate becomes
o =D e -Gl i G/ (65)
where Df is the matrix form of ¢ in Eq. (16) and € = V*#&". For subsequent derivations, the discretization
flag A is left off certain terms. Integrating Eq. (65) results in

k+1 __ _tr c : h
ol =" —D°-GAL in Q[ (66)
where 6", = 6, + D° - A€, is the trial stress, A€, = €'\, — €., Al, = (H — Cons n+ 1is the current time

step, and & + 1 is the current iteration of a nonlinear solution algorithm. Thus, the term subtracted from the
right-hand side of Eq. (66) may be thought of as a correction to the trial stress because the enhancement is
already contained within the localized element whose nodal displacements are the total displacements. The
algorithmic form of the stress displacement relation (43) is

|‘],k¢ta‘n+1| + tan 5((1.@&“1 +p,k;’;,ln+l) = |q,Ffe,t-,100| + tan a(qf/e.n,loc +P5fe<,100) + H;
x cosy|lll| on Z.. (67)

Note that if the sign convention changes from continuum mechanics convention (¢ > 0 and ¢ > 0 in ten-
sion for one dimension) to soil mechanics convention (¢ > 0 and ¢ > 0 in compression), Eq. (67) would still
be valid if an appropriate sign change was made before the pressure terms in the damage yield and plastic
potential functions in Egs. (34) and (35).

For post-localization, to determine plastic loading and unloading along .%,, the weak form of the trial
residual stress needs to be calculated:
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O =199, canl + tana(q}(;e,n,wrl +P9, 1)
- [|q,9’21,10c| + tan a(q.v’e,n,loc +p,9”g,loc) + H; cos !//|Ce4n” ) (68)

where

if Q%,>0 then jump displacement {*'! evolves on 7, via (66) and (67)
else Gyt = 4Gants  4Fenntl = 45 np;

— pir . _ . _ Lt
PS e+l = pyﬁe,n+17 Ce‘n+l - Ce,na Optl = 0,15

endif

The tangential component of traction g4, ¢ on %, must not soften less than a prescribed residual value
q.,:resid» and the normal component of deviatoric traction g, , plus the pressure p,, must not be in tension
(i.e., a tension cut-off for Eq. (34)). Thus, the following checks are made:

if gy ] <4oiiesia then ¢9l . =qoreia;  Hs =0;
”e = tan a”d
. k+1 k+1 k+1 k+1
if (@Y et T Pyper) >0 then (g5, + 15 ,0) =0
u, = sign(/ (n,®t,)" : 0'th> t,. (70)
i
loc,e

By setting Hs = 0, the jump displacement along ¥, may continue to evolve but without the resolved stress
on ¥, being softened further. Thus, the stress update for a localized element e is fully defined by Eq. (66)
through Eq. (70).

Linearization of the nonlinear finite element equations in Eq. (64) for solution by the Newton—Raphson
method (refer to Simo and Hughes, 1998) results in

R =Ky - 0d, 4 K ;00

en+

oo =K 8d, + Ky 8L, (71)

e,n+

where

Ku= / B'D°B.dQ,
o

Ky =— / B! D°G.dQ,
o

1
K= / F!D°B.dQ,
¢ Qg.loc

1
Ky =—— F'D*G,dQ — Hjcos ysign({*'! ),

(¢ en+1
e Qh

e/loc

and &d, =d'| —d',, 8(, = (i1} — (¢, ,. Since strain due to the jump displacement is treated as an en-
hanced strain (Eq. (51)), the jump displacement {, may be assumed discontinuous between elements and

thus may be condensed out of the equations at the element level to form the reduced system

_RI;,11+1 = Kdd : Sd@’ (73)
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where
kl;nJrl = R]e(,rH»l - KdgK'EClrlec,nJrl’ (74)
Ky =Ku— KiK' Kea. (75)
The jump displacement increment &(, is then updated at each iteration via
SCe = _KCEI (l"anrl + KCd . Sde). (76)

5.3. Numerical implementation of the localization condition

The numerical implementation of the localization condition in Eq. (30), which is checked at each Gauss
point at the end of a converged time step ¢,,, is as follows:

3\/§S3,n+17 2 B -
llsnill <\/:(ﬁ b) (ﬁer))

then the element has localized,

if <h or detA,. <0,

(77)

where 4! =1 x 10~ is chosen. Depending on the time step size, det A,,; <0 may be met rather than the
first inequality in Eq. (77), but this first inequality will be met to the finest tolerance 4" so desired if the time
step is refined enough. Upon detection of discontinuous displacement fields within finite elements via Eq.
(77), the slip surface orientations are determined by Eq. (31). An algorithm was developed which chooses
+0 or —0 depending on the element deformation at onset of localization (Regueiro, 1998).

6. Numerical examples

Two numerical examples are presented to demonstrate the model’s ability to represent localized de-
formation occurring in pressure sensitive materials in a mesh-independent manner. Enhanced bilinear
quadrilateral elements are used with standard 2 x 2 numerical integration for dilative plastic deformation
and B (Hughes, 1980) for deviatoric. The scale factor for displacements of deformed meshes is 1.0 unless
otherwise noted. An absolute convergence tolerance of 107! is used for the Euclidean norm of the residual
in Eq. (73) for the Newton—Raphson iteration. For this paper, the jump dilation angle i is determined from
Egs. (29) and (32) at localization, but i could be chosen separately for the post-localization state.

6.1. Plane strain compression of Gosford sandstone

The experimental results of Ord et al. (1991) are analyzed using the model presented in this paper (refer
to Regueiro et al. (1998b) for previous analysis). The material constants are shown in Table 1 for confining
pressure o, = 20 MPa. The experimental setup is shown in Fig. 3. In Borja and Regueiro (2001), a weak
element (slightly lower yield stress) was selected for one case to demonstrate the difference between the
uniform stress solution and the nearly uniform one. The difference was negligible. The selection of the
location of a weak element is just as arbitrary as choosing where the slip line begins in a mesh with no weak
elements. Thus, for this example no weak elements are selected, and the location of the slip line is chosen
similar to that observed in the experiment. For the slope example in Section 6.2, a nonuniform stress field
naturally results from the boundary value problem, and thus the start of the slip line is determined.
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Table 1

Material parameters for plane strain compression of Gosford sandstone
E 15 MPa
v 0.3
[ 13 kPa
B 0.5
b 0.35
¢ 30.0°
W ~22°
H —1 MPa
H; -20 MPa/m
45 tresid 0.0 kPa

Z2 g9

g1 = O¢

80 mm
/’ |
/
80 mm
€3 =0, o3
=& > T
S 40 mm
T3

Fig. 3. Finite element model boundary conditions and dimensions for plane strain compression of Gosford sandstone. Confining
pressure is . = 20 MPa. Prescribed displacement of top loading platen results in reaction load P, from which g, may be calculated.

Deformed meshes for the standard and enhanced solutions are shown in Figs. 4 and 5. Note that in Fig.
4, localized deformation is observed even without perturbing the uniform stress state (i.e., by weakening an
element, tapering the geometry, or allowing a small amount of friction at the contact platens). This is
reflected in the standard solution load—displacement plots in Fig. 6 showing a marked softening behavior
upon localized deformation, and the mesh dependence thereof. The x; displacement of the node at the
upper right corner of the 512 element mesh in Fig. 4 is not fixed. These localized meshes are a result of the ill
posed governing PDE which stems from rate-independent strain softening plasticity. Without a material or
geometric inhomogeneity, localized deformation could be triggered by LU decomposition of the linear
system or the radial return algorithm. For the enhanced solution curves in Fig. 6, the results are clearly
mesh independent capturing the same amount of dissipation for each mesh, with the residual stress g  resia
reached at approximately 1.2 mm displacement. In Fig. 6, the reaction load offset at zero displacement is
the load due to the confining pressure.
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Fig. 4. Deformed meshes for standard solutions with nonassociative, dilative plastic flow: f = 0.5, = 0.35, 128 and 512 bilinear
quadrilateral elements. Displacements are magnified by a factor of 10.0.

/ =/

Fig. 5. Deformed meshes for enhanced solutions with nonassociative, dilative plastic flow: = 0.5,5 = 0.35, 128 and 512 bilinear
quadrilateral elements. Localized elements are shaded. Experimental failure surface orientation is drawn as a thick line on each mesh.
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Fig. 6. Load-displacement plots for nonassociative, dilative plastic flow: f = 0.5,5 = 0.35. Enhanced solution curves are the same
demonstrating mesh independence. Standard solution curves demonstrate mesh dependence.

6.2. Plane strain slope stability

A slope stability problem is now presented to demonstrate the model’s ability to represent localized
deformation in a classical geotechnical structure in a nearly mesh-independent manner. Material para-
meters are shown in Table 2 for nonassociative deviatoric and nonassociative dilative plastic flow:
b =0.0,0.05. If b is chosen any larger, the slip line encounters the base of the mesh, and the numerical
solution does not converge further. A gravity load is first applied, the displacements are reset to zero, and a
downward displacement is prescribed at the middle of a rigid footing resting at the crest of the slope. The
downward displacement may represent the settlement due to a structure placed at the crest of the slope. The
dimensions and boundary conditions of the problem are designated in Fig. 7. No weak elements are
specified since the boundary value problem inherently generates a nonuniform stress field where, as ex-
pected, the element adjacent to the corner of the rigid footing localizes first. This is a fictitious example and
not an attempt to model the behavior of an actual soil embankment, although the material parameters are

Table 2
Material parameters for slope stability problem
E 10 MPa
v 0.4
2 40 kPa
B 0.3
b 0.0, 0.05
¢ 10.0°
W ~0.9°, ~3.7°
H 0
H; —100 kPa/m
49 resid 0.0 kPa

y 20 kN/m?
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Fig. 7. Slope stability problem. Gravity load g applied before footing displacement u is prescribed.
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Fig. 8. Undeformed meshes showing slip line orientation for enhanced solutions with nonassociative, deviatoric plastic flow:

0.0, 400 and 1600 bilinear quadrilateral elements. Slip lines are drawn through localized elements, which are shaded.
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Fig. 9. Undeformed meshes showing slip line orientation for enhanced solutions with nonassociative, dilative plastic flow:
B =0.3,b6=0.05, 400 and 1600 bilinear quadrilateral elements. Slip lines are drawn through localized elements, which are shaded.

chosen to approximately represent those of a soil. Two meshes with 400 and 1600 bilinear quadrilateral
elements are used to analyze the problem.

Figs. 8 and 9 show the slip line orientations on the undeformed meshes for each dilation constant 5 (0.0,
0.05). Shaded elements are those through which the slip line has traced. Insensitivity to mesh alignment is
demonstrated by the slip line tracing across elements without element sides being aligned with the slip line
orientation and by slip lines having the same orientation for the 400 and 1600 element meshes. The slip line
initiates in the element just to the right of the rigid footing corresponding with the load at which the
standard and enhanced solution curves begin to deviate from one another as seen in Figs. 10 and 11. The
load at which the enhanced solution curve begins to soften is the load at which the slip line has fully

propagated through the mesh. Note the different slip line curvatures in Figs. 8 and 9. The slip line in Fig. 8
has a smaller radius of curvature than the slip line in Fig. 9. This is due to different dilation constants used

in each case.
Figs. 12-15 show deformed meshes at end of loading for the standard and enhanced solutions. Note the
diffuse deformation patterns for the standard solutions and the sharp localized deformation for the en-
hanced solutions. Note that in Figs. 13 and 15, for the 1600 element mesh certain localized elements appear
to have closed on themselves. This is possible for small strain analyses, but for finite deformation analyses,
the simulations would not have been able to proceed as far as they did in Figs. 13 and 15 because finite
element volume must remain positive. One way to address this problem is to implement the strong dis-
continuity plasticity model within the framework of a mesh-free method (Belytschko et al., 1996; Liu et al.,
1999), thus abandoning the AES method. Such an implementation is presently being considered. Another
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Fig. 10. Load-displacement plots for nonassociative, deviatoric plastic flow: = 0.3,5 = 0.0. Similar softening slopes of enhanced
solution curves demonstrate near objectivity with respect to mesh refinement.
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Fig. 11. Load-displacement plots for nonassociative, dilative plastic flow: = 0.3,5 = 0.05. Similar softening slopes of enhanced
solution curves demonstrate near objectivity with respect to mesh refinement.

way would be to remesh in order to introduce a free surface along the slip surface gecometry defined by the
localization condition in each element.
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Fig. 15. Deformed meshes for enhanced solutions with nonassociative, dilative plastic flow: f = 0.3,5 = 0.05, 400 and 1600 bilinear

quadrilateral elements. Localized elements are shaded.
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The similar slopes of the enhanced solution curves in Figs. 10 and 11 demonstrate near mesh inde-
pendence of the model, where (¢4, ., + P!, ) > 0 is detected for certain localized elements and set = 0
via Eq. (70); for the Gosford sandstone example of the previous section, (@5 e +P5) <0 in the
localized elements and thus stays in compression.

7. Conclusions

A rate-independent, nonassociative, strain-softening Drucker—Prager plasticity model has been formu-
lated in plane strain in the context of strong discontinuities and implemented along with an enhanced
bilinear quadrilateral element within the framework of an assumed enhanced strain finite element method.
Finite element analyses of localized deformation occurring in a Gosford sandstone parallelepiped and a soil
slope have been conducted in a mesh-independent manner (nearly mesh independent for the slope stability
problem). The effect of dilatancy on the orientation of slip lines has been demonstrated for the slope
stability example.

It is important to simulate the structural phenomenon of localized deformation and the associated loss
of material body strength as accurately as possible via a finite element model but to do so in a mesh-
independent manner. The strong discontinuity approach is one way to achieve this aim.

The phenomenological model presented in this paper needs to be improved before it can attempt to
predict localized deformation in geomaterials. Future work includes extending the model for three-
dimensional analysis, incorporating the fluid phase and nonlinear geometric effects, and considering a
shear-band-to-slip-surface transition.
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